Vitamin and Mineral Supplementation in Enteral and Parenteral Nutrition

Department of Pediatrics
Dell Medical School
The University of Texas at Austin
sabrams@austin.utexas.edu
Objectives

- Interpret literature related to mineral requirements in IV nutrition
- Identify issues related to trace minerals provided in IV nutrition
Case: Extreme malnutrition in neonate

- 23 week, 506 g infant
- Transferred at 10 weeks of age from hospital in Texas due to inability to feed and inability to place/maintain CVL
- Ventilated, minimal oxygen
- Rickets and long-bone fracture
- Transferred with minimal history, PIV only
Labs on admission

- Conj bili 4.9 mg/dL
- Albumin 1.7 g/dL
- Phosphorus 2.5 mg/dL
- Alk phos 323 IU/L
- Zinc 68 microg/dL (low normal)
- Serum copper 14 microg/dL (normal 75-153)

Begun on Omegaven, TPN with CVL 4 g/kg/d protein, supplemental copper, continue trace minerals daily.
Diagnoses

- Severe protein-energy malnutrition. Prealbumin < 5, very low BUN
- Profound copper deficiency
- Rickets
- Liver disease, likely inflammatory-mediated due to TPN, malnutrition, recurrent infections
- All of these diagnoses could be avoided with good nutritional management and use of novel lipid products
Hypocalcemia: Definition

- No absolute definitions. Usual values are:
 - Babies ≥ 1500 g
 - Total calcium (Ca) < 8.0 mg/100 mL (2mM) – don’t measure total Ca in first week of life.
 - Ionized calcium (iCa) < 4.4 mg/dl = 1.1 mM
 - Usually no symptoms unless < 1.0 mM
 - VLBW infants (< 1500 g)
 - Total Ca < 7.0 mg/100 mL (1.75 mM)
 - iCa < 4 mg/100 mL (1.0 mM)
 - Usually no symptoms unless < 0.8 mM
TPN: Minerals and Micronutrients

- Minerals
 - Increase Ca/Phos **slowly** to up to 1.75-2.0 mmol/dL over 5-10 days. Caution in babies < 1000 g birth weight (BW).
 - Begin phos 1:1 With Ca by 24-30 hours of age. It is acceptable to begin within first 6 hours of life.
 - We usually limit to 1-1.2 mmol/kg/d each of Ca and Phos in infants < 1000-1250 for first 4-5 days to prevent hypercalcemia
 - Make minimal changes in the Ca/Phos ratio in most infants.
 - Hypocalcemia is uncommonly a problem in VLBW infants, Accept iCa > 0.80 mmol/L in most cases and rarely if ever should calcium be given by bolus to VLBW infants.
Early hypocalcemia (first 3-4 days of life)

- Prematurity
 - Impaired PTH function, etiology unknown
 - Infants of diabetic mothers: 10-20% or more
 - Excess calcitonin and inadequate PTH function
- Cardio-respiratory depression at birth
 - Increased phosphate load from tissue catabolism
 - We are seeing with fluid restriction in cooled infants
- Intrauterine growth retardation (IUGR)
 - Decreased transplacental Ca and phosphorus transfer
- Maternal long-term magnesium sulfate therapy (rare)
- Severe maternal vitamin D deficiency (rare in US)
- Hyperventilation, exchange transfusion
Interventions

- Prevention via early TPN in high-risk populations
 - Early TPN. No benefit to separate infusion.
- Symptomatic
 - Boluses of Ca should be followed by a continuous infusion in almost every case
 - Hypomagnesemia ($\leq 1.5 \text{ mg/100 mL}$): Suppresses PTH
 - Magnesium sulfate 25 mg/kg/dose (0.2 mEq/kg/dose) q12 hours IV over 2 hours. Usually 2 doses.
Does vitamin D deficiency cause symptomatic hypocalcemia?

- Maternal vitamin D deficiency can cause symptomatic neonatal hypocalcemia.
 - Probably rare in US but limited data.
 - Recent case series of 19 babies in Qatar*.
 - Symptomatic hypocalcemia (13 seizures, 5 jittery, 1 stridor), mean age about 9 days.
 - Serum 25-OHD mean of 9 ng/mL (range 3 to 18 ng/mL), in mothers was 6 ng/mL (range 4 to 12 ng/mL).

Case: Itsy bitsy baby with hypercalcemia

- Asked to see infant at 72 hours of age due to ionized calcium of 1.84 mmol/L (mM)

- History:
 - Born at 580 g and 24 3/7 weeks gestation
 - Started on TPN at 2 hours of age providing 1.2 mmol/dL Ca, no P. IV rate = 100 mL/kg/d
 - At 60 hours of age, 1.2 mmol/dL phosphorus (P) added
 - Serum P = 3.1 mg/dL, serum Mg = 1.8 mg/dL
 - Infant is asymptomatic, remains on ventilator
Etiology/symptoms

- Probably a combination of low usage of Ca for bone formation, limited renal calcium excretion
- May also have high P utilization
- Not usually primarily related to vitamin D or PTH
- Most commonly seen in ELBW infants. Very common < 750 g birthweight
- Extremely high iCa seen on DOL 3-5: iCa may exceed 2.0 mmol/L – values that are life-threatening in older children
Etiology/Symptoms (cont.)

- Relatively common to have mild hypercalcemia (total Ca 11-12 mg/dL or iCa 1.45-1.6 mM). Probably a non-disease.

- Hypercalcemic neonates do not have symptoms, but serious concern for peripheral or CNS calcification.

- Also seen in cardiac babies given calcium infusions.

- Can occur if KPhos and KCl are stopped for > 48 hours due to concern of K excess in any infant.
Hypercalcemia: Therapy

- Start P within 24 hours of life in most cases in VLBW infants to prevent hypercalcemia. Usually 1:1 mmol:mmol with Ca.*
- Mild-moderate hypercalcemia (iCa 1.4-1.7 mM) – decrease TPN Ca infusion to < 1 mmol/dL
- Some infants only tolerate 0.3-0.5 mmol/dL Ca in TPN with increase of 0.1-0.2 mmol/dL daily.
- If severe (iCa > 1.7-1.8 mM), stop all TPN calcium and recheck in 12-24 hours.
- Can persist in smallest infants for several weeks.

*Ca is 40 mg = 1 mmol and P is 31 mg = 1 mmol
Case: Rickets in ELBW infant

- Asked to see an infant due to an incidental finding on a chest X-ray of two rib fractures with subsequent measurement of serum alk phos of 1480 IU/L
 - History: Former 25 2/7 week, 760 g male with history of BPD, sepsis, medical NEC not requiring surgery
 - Now 53 days old and weight 1560 g. Tolerating feeds of 120 mL/kg/day of a specialized formula with high MCT. TPN stopped DOL #51
 - Continues on mechanical ventilation. Medications include low-dose IV hydrocortisone and furosemide
Factors contributing to rickets

- **Major:**
 - ELBW (< 1000 g birth weight)
 - Long-term TPN
 - Although full TPN has enough Ca and P to avoid rickets, often have fluid restriction or mineral intake limitation in long-term TPN.
 - Steroids
 - Often a major etiology. Steroids block Ca absorption, increase renal losses and demineralize bone directly.
Other factors

- Use of non-preterm formula
 - Low Ca and P content relative to needs.
 - May have inhibitors of Ca absorption (e.g. soy protein)
- Fluid restriction
 - Critical unrecognized factor.
- Nutrient malabsorption secondary to bowel injury?
Less likely to be involved

- Immobility
- Loop diuretics
 - Usually use furosemide which causes approximate doubling of urinary Ca. Smaller factor in rickets than intake decreases.
- Vitamin D deficiency
 - Rarely principal factor in VLBW infants.
X-ray findings in infants with rickets

Abnormalities of metaphyses
Fraying and cupping
Dense line (healing)
Findings similar to older infants with rickets
More information

- Further lab evaluation to include:
 - Serum P, conjugated bilirubin/other liver function tests.
 - Serum 25-OHD (not 1,25-OH\(_2\)D), PTH, fractionated (bone-specific) alkaline phosphatase activity may be considered, but difficult to identify normal values.
- Needs X-rays of at least one wrist or knee.
Recommendations

Table 4. Recommendations for Enteral Nutrition for VLBW Infants

<table>
<thead>
<tr>
<th></th>
<th>Calcium mg/kg/day</th>
<th>Phosphorus mg/kg/day</th>
<th>Vitamin D IU/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsang et al (2005)³²</td>
<td>100-220</td>
<td>60-140</td>
<td>150-400*</td>
</tr>
<tr>
<td>Klein (2002)³³</td>
<td>150-220</td>
<td>100-130</td>
<td>135-338†</td>
</tr>
<tr>
<td>Agostoni (2010)⁶</td>
<td>120-140</td>
<td>65-90</td>
<td>800-1000</td>
</tr>
<tr>
<td>This AAP clinical report</td>
<td>150-220</td>
<td>75-140</td>
<td>200-400</td>
</tr>
</tbody>
</table>

* Text says “aim to deliver 400 IU/daily.”
† 90-125 IU/kg (total amount shown is for 1.5-kg infant).
Some details of AAP recommendations for preterm infants

- When infants reach a body weight >1500 g and tolerate full enteral feeds, vitamin D intake should generally be approximately 400 IU/day, up to a maximum of 1000 IU/day.
- Serum APA >800 to 1000 IU/L or clinical evidence of fractures should lead to a radiographic evaluation for rickets and management focusing on maximizing calcium and phosphorus intake and minimizing factors leading to bone mineral loss.
- A persistent serum P concentration < about 4.0 mg/dL should be followed, and consideration should be given for P supplementation.

Abrams SA and Committee on Nutrition, AAP, Pediatrics, May 2013
Vitamin D in high risk infants

- Dietary requirements have on-going research and controversy.
- **Routine** assessment of vitamin D status in all preterms is not part of IOM/AAP recommendations. We do not recommend it.
 - Also not recommended in all older children (AAP Oct. 2014)
- Screening may be considered with rickets, bowel or liver disease, poor nutritional status or some chronic illnesses such as renal failure.
 - Target 25-OHD ≥ 20 ng/mL
Hypercaldemia

- Monitor iCa – should usually be between 0.8 and 1.45 mmol/L in VLBW and 1.0 and 1.45 mmol/L > 1500 g BW.
 - Mild hypercalcemia (1.45-1.6 mmol/L) – Usually do nothing. If increasing rapidly, decrease Ca and usually Phos (typically to 0.5 mmol/mL each).
 - Do not remove all of the calcium unless iCa > 1.8 mmol/L.
- DO NOT leave magnesium or phosphorus out of TPN beyond about 24-36 hours of age unless lab tests show markedly elevated values.
Calcium Gluconate

Guidelines to Conserve Calcium (and Phosphorus)

<table>
<thead>
<tr>
<th>Neonatal Patients</th>
<th><1500 grams</th>
<th>>1500 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Gluconate</td>
<td>1.5 mmol/100 mL</td>
<td>0.6 mmol/100 mL</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>1.5 mmol/100 mL</td>
<td>0.6 mmol/100 mL</td>
</tr>
</tbody>
</table>
| **Exceptions** | • Fluid restriction
• Increase alkaline phosphatase | • Rickets
• Severe fluid restriction (<80 mL/kg/day)
• Dialysis patients |
Calcium Supplementation

- Calcium bolus
 - Non-physiologic
 - Potentially harmful
 - Should not be a standard way to administer maintenance calcium to a neonate

- Calcium Chloride
 - Use for all separate IV infusions and boluses
 - Consider removing calcium gluconate and continue phosphorus supplementation in TPN
 - Not recommended to be added to TPN or with phosphate-containing solutions
 - Extravasations could occur – central line access preferred
Potassium Phosphate

- Restricted for patients who require intravenous phosphorus supplementation and cannot be managed with sodium phosphate and potassium chloride.
- Patients must meet one of the following indications:
 - Serum sodium greater than 150 mmol/mL
 - Serum potassium less than 3 mmol/L and chloride greater than 110 mmol/L
Sodium Glycerophosphate

FDA approved a temporary importation of Glycophos® to alleviate the shortage

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Potassium Phosphate</th>
<th>Sodium Phosphate</th>
<th>Sodium Glycerophosphate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate Concentration</td>
<td>3 mmol/mL</td>
<td>3 mmol/mL</td>
<td>1 mmol/mL</td>
</tr>
<tr>
<td>Type of Phosphate</td>
<td>Inorganic</td>
<td>Inorganic</td>
<td>Organic</td>
</tr>
<tr>
<td>Sodium</td>
<td>X</td>
<td>1.3 mEq/mL</td>
<td>2 mEq/mL</td>
</tr>
<tr>
<td>Potassium</td>
<td>1.4 mEq/mL</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Sodium and Potassium Acetate

- Restricted for neonatal patients who require an intravenous alkalinizing agent and cannot be managed with sodium bicarbonate

- Patients must meet one of the following indications
 - Birth weight less than 1,250 grams due to renal bicarbonate wasting
 - pH less than 7.25, acid base excess greater than 8 mmol/L and lactate less than 3 mmol/L
Sodium and Potassium Acetate

Consider adjusting NaCl or KCl when adding either NaAcetate or KAcetate

<table>
<thead>
<tr>
<th></th>
<th>TPN #1 (mEq/100 mL)</th>
<th>TPN #2 (mEq/100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>KCl</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NaAcetate</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>KAcetate</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Cysteine

- Conditionally-essential amino acid
- Decreases the pH of TPN solution to allow increased calcium and phosphorus solubility
- Evaluate solubility curves to optimize standard concentrations of calcium and phosphorous without cysteine
- Some do not use it in babies < 1 kg due to concern about acidosis
Cysteine

- Minimum amino acids 2%
 - Safely provides a standard amount of calcium and phosphorus 1.2 mmol/100 mL

- If infant requires less protein or more calcium or phosphorus
 - Discuss with prescriber to determine true need
 - Rickets, renal failure or metabolic?
 - Check solubility curve
 - Remember to refer to the curve without cysteine
Solubility Curve

Minimum amino acids 2%

- Safely provides a standard amount of calcium and phosphorus 1.2 mmol/100 mL

Texas Children’s Hospital Formulary with Permission of B. Brown Medical Inc, Irvine
Estimated Iron Requirement

- Birth: ≈ 75 mg
- 1 year: ≈ 360 mg
- Increment: = 290 mg/ yr
 \(\div 365 \) ≈ 0.8 mg/d
- Assume absorption: ≈ 10%
- Requirement: ≈ 8 mg/d
 ≈ 2 mg/kg/d

After Oski et al
IV iron

- Usually no transfusions in 2 weeks
- Serum ferritin not markedly elevated
- No ongoing bacterial infection
- Unlikely to be able to tolerate oral iron for 3-4 weeks or poor absorption is likely
- Likely to be inpatient for 2 weeks after start
- Physician isn’t too afraid to use it (anaphylaxis risk)
 - Current safety profile is excellent.
 - Issue is the anion it is with, not the Fe itself
 - “Only Thing We Have to Fear Is Fear Itself” (FDR)
Box 2
Sample protocol for iron dextran administration to TPN-dependent infants

Order anaphylaxis medications (diphenhydramine, hydrocortisone, and epinephrine) to bedside to be administered only per physician’s orders; physician must be present during test dose administration

Day 1: test dose: 0.2 mg IV once over 5 minutes
Day 2 of test dose: give iron dextran 0.5 mg IV once over 5 minutes
Day 3 of test dose: give iron dextran 0.8 mg IV once over 5 minutes
Monitor blood pressure during and after administration
Then start: iron dextran 1 mg IV every Monday, Wednesday, and Friday
Copper requirements

- **Parenteral**
 - 20 mcg/kg/day
 - Do not stop with cholestasis

- **Enteral**
 - AAP 108 mcg/kg/d
 - ESPGAN 117-156 mcg/kg/d
 - Formulas 100-250 mcg/100kcal
Neonatal copper deficiency

- Microcystic anemia, neutropenia, thrombocytopenia
- Hypothermia, hypotonia
- Apnea
- Depigmentation of skin, hair, prominent superficial veins
- Brittle “kinky” hair, pili torti
- Boney changes
 - Osteoporosis, fractures, metaphyseal cupping/spurs
 - Hepatosplenomegaly, conj hyperbilirubinemia
- Lethargy
- Recurrent infections
- Vascular rupture
- Death
Neonatal copper deficiency

- Biochemical
 - Low serum Copper - usually increases with age
 - We are especially concerned if < 50 microg/dL
 - Low ceruloplasmin (copper carrying protein)
 - Low eSOD (superoxide dismutase activity in erythrocytes)
Copper deficiency radiographs: Osteopenia and the symmetrical appearance of sickle-shaped metaphyseal cupping and spurs
Zinc Deficiency - Diagnosis

- Clinical signs esp. diaper rash
- Low alkaline phosphatase
- Low plasma Zn
 - Normal 60-100 µg/dL (prefer > 80)
 - Deficiency < 60 µg/dL
 - Severe deficiency < 40 µg/dL
- Hair/ RBC/ WBC/ Monocyte zinc
- RBC metallothionein
- Trial of therapy
Recommended zinc Intakes

- Preterm infants (enteral)
 - AAP: 600 mcg/kg/d
 - ESPGAN: 720 - 1440 mcg/kg/d
 - CPS: 1000 mcg/kg/d
 - Consensus: 1000 mcg/kg/d

- Parenteral
 - AAP/ESPGAN/CPS
 - 400-500 mcg/kg/d
Trace mineral packages

Table 3. Preterm Infant Parenteral Trace Element Recommendations and Product Comparison Table.\(^3,10,11,12,13,14\)

Trace Element	ASCN Preterm Recommended Dosage,\(^{10}\) mcg/kg/d	A.S.P.E.N. Preterm Recommended Dosage,\(^{1}\) mcg/kg/d	ESPGHAN Preterm Recommended Dosage,\(^{11,12}\) mcg/kg/d	Multitrace-4 Neonatal (American Regent), per mL\(^{13}\)	Multitrace-4 Neonatal Dosing\(^\text{a}\) (0.2 mL/kg/d), mcg/kg/d	Peditrace (Fresenius-Kabi),\(^{14}\) European, per mL
Zinc	400	450–500	450–500	1.5 mg (1500 mcg) (as zinc sulfate)	300	0.25 mg (250 mcg) (as zinc chloride)
Copper	20	29	20 (infant)	0.1 mg (100 mcg) (as cupric sulfate)	20	0.02 mg (20 mcg) (as copper chloride)
Chromium	0.2	0.05–0.3	Recommendation to add none	0.85 mcg (as chromic chloride)	0.17	None
Manganese	1	1 (infant)	1 (infant)	0.025 mg (25 mcg) (as manganese sulfate)	5	0.001 mg (1 mcg) (as manganese chloride)
Selenium	2	1.5–4.5	2–3	None	NA	2 mcg (as sodium selenite)
Iodide	1	1 mcg/d (infant)	1	None	NA	1 mcg (as potassium iodide)
Molybdenum	0.25	1 (not currently added to PN in the United States)	1 (LBW infant)	None	NA	None
Iron	100–200 (not currently added to PN in the United States)	200	50–100 (infant)	None	NA	None
Fluoride	No recommendation	No recommendation	No recommendation	None	NA	57 mcg (as sodium fluoride)

\(^{a}\)Dosing recommendations per package inserts: Multitrace-4 Neonatal: Recommendations for preterm infants up to 3 kg—zinc, 300 mcg/kg/d; copper, 20 mcg/kg/d; manganese, 2–10 mcg/kg/d; chromium, 0.14–0.2 mcg/kg/d\(^3\) (dosing of 0.2 mL/kg/d provides these amounts). Peditrace: General pediatric dosing recommendations—1 mL/kg/d should be adequate to meet the baseline trace mineral needs of pediatric patients.\(^{14}\)

\(^{\text{a}}\)Available for use in United States.
Summary

- Micronutrients are key part of nutritional intake in high-risk infants
- Interactions, shortages and medical management remain problems for providing adequate intakes
- Intravenous use of iron, supplementation with zinc and copper need more consideration in special circumstances