Neonatal Shock

Moira Crowley, MD
Assistant Professor, Pediatrics
Co-director, Neonatal ECMO Program
Rainbow Babies and Children’s Hospital
Case Western Reserve University School of Medicine
Objectives

• Review the initial evaluation and differential diagnosis of neonatal shock
• Review the pharmacology of treatment of shock
• Apply the above information to a clinical case
Neonatal Shock

• Imbalance between tissue oxygen delivery and oxygen consumption

• Syndrome with diverse group of life threatening and multifactorial conditions

• Not regarded as a single pathologic entity
Oxygen Delivery and Consumption

Oxygen Delivery must remain > 2-3 times consumption

J.A. GUTIERREZ AND A.A. THEODOROU

OXYGEN DELIVERY AND OXYGEN CONSUMPTION IN PEDIATRIC CRITICAL CARE
Blood Pressure

Preload → Heart rate → Cardiac output → Blood pressure

Contractility → Stroke volume → Systemic vascular resistance → Blood pressure

Afterload
Hypotension

• Associated risks preterm > term infants
 – Inability to regulate cerebral blood flow (CBF)
• Paucity of data on reference values for arterial blood pressure in newborns
• Mean arterial blood pressure ≈ GA (weeks)
• BP tends to increase with:
 – Advancing GA
 – Birth weight
 – Postnatal age (esp within first 5 days of life)
“Normal” Blood Pressure Ranges

Blood Pressure “Rule of Thumb”

- Lower acceptable mean blood pressure (mmHg) on DOL 1 should be ≈ GA wks
- DOL 2-3 increases by ~ 5-7mmHg
- By DOL 3, 90% infants 23-26 wks GA will have mean blood pressure >30mmHg

Cerebral Blood Flow and Autoregulation

No autoregulation with blood pressure changes (as may occur with severe asphyxia)

Autoregulation with blood pressure changes (normal state; may be dampened in premature newborns and with specific disease states)

(A) with decreasing gestational age, mean arterial blood pressure approaches the lower limit of the autoregulation plateau; this predisposes the premature brain to decreased cerebral blood flow with changes in blood pressure.

Shock
Case

- 4.1kg 39 wk male born via c-section for failure to progress
- Pregnancy complicated by gestation DM on glyburide, screens negative including GBS
- Floppy, poor respiratory effort → PPV → CPAP
- Inability to obtain pulse oximetry and pale
- APGARs: 2, 5, 6
- Vital signs: HR 171; RR 31; Sat 85%; Blood Pressure unable to register
Is this baby in shock?
If so, which phase of shock?
What type of shock?
Phases of Neonatal Shock

• Compensated
• Uncompensated
• Irreversible
Phase 1: Compensated Shock

- Vital organ function maintained
 - Neurohormonal compensatory mechanism
- Redistribute blood flow to heart, brain and adrenals
- Decreased: stroke volume, central venous pressure and urine output
- Normal blood pressure
 - Increased myocardial contractility and HR so CO remains ~normal
Compensated Shock, cont.

Blood pressure may not always appropriately reflect status of organ blood flow
Phase 2: Uncompensated Shock

- Failure of intrinsic neurohormonal compensatory mechanisms
- Decreased:
 - microvascular perfusion
 - myocardial contractility
 - stroke volume
 - blood pressure
- Decreased tissue perfusion → lactic acidosis
- Multiorgan failure if untreated
Uncompensated Shock, cont.

Diagram:

- **Preload** → **Heart rate** → **Cardiac output** → **Blood pressure**
- **Contractility** → **Stroke volume**
- **Afterload** → **Systemic vascular resistance**
Phase 3: Irreversible Phase

• Cellular damage → complete organ failure
• Death invariably
Cellular and Molecular Pathophysiology of Shock

- Reactive oxygen species \rightarrow cell injury
- Nitric oxide overproduction \rightarrow hypotension
- Eicosanoids \rightarrow vasomediators and inflammatory mediators
- K_{ATP} channels \rightarrow vascular smooth muscle tone
Down-Regulation of Adrenergic Receptors

• Occurs with critical illness and exogenous catecholamine administration
• Absolute or relative adrenal insufficiency
• Leads to “pressor-resistant shock”
 – Glucocorticoids
Back to our case…

- Intubated, lines placed
 - Code event requiring epinephrine and compressions during placement
- VBG: <6.8/37/113 Lactate 13.8 Hct 24
- NS bolus and PRBCs
- Oscillator, 100% oxygen, iNO 20
- Saturations now mid 90s, HR 140s
- Echocardiogram done
Echocardiogram
Types of Shock

• Hypovolemic
• Cardiogenic
• Distributive

• More than one type may be involved
Hypovolemic Shock

• Uncommon primary cause of neonatal shock
• Hypovolemia \rightarrow low CO and \downarrow preload \rightarrow \downarrow BP
• Causes
 – Fetomaternal hemorrhage
 – Massive hemorrhage
 – Inappropriate increase in vascular capacitance
 – Surgical/GI losses (gastrochisis)
 – Decreased venous return (air leaks, PEEP)
 – DIC
 – Dehydration (insensible losses/polyuria)
Cardiogenic Shock

• Neonate have immature myocardial structure and function
 – Greater dependence on extracellular $[\text{Ca}^{2+}]$
 – Greater sensitivity to increased afterload
 – ELBW seem to be more sensitive
Immature Myocyte
Cardiogenic Shock, cont.

• Increase in afterload \(\rightarrow\) myocardial dysfunction and decreased cardiac output

• Transitional circulation
 – Placenta low resistance \(\rightarrow\) cut the cord \(\rightarrow\) immediate increase in SVR
 • Can lead to increased LV afterload
 • Decrease in cardiac output
 • Development of shock
Other Causes of Cardiogenic Shock

- Perinatal asphyxia
- Prolonged septic shock
- PDA ligation
- Cardiomyopathies
- Myocarditis
- Ductal-dependent heart defects
- Arrhythmias
Distributive Shock

- Most common cause of early neonatal shock
- Impaired regulation of vascular tone +/- myocardial dysfunction
- SEPSIS
 - Inflammatory mediators (TNF-α)
Distributive Shock, cont.

- Two hemodynamic patterns
 - Warm shock
 - Loss of vascular tone
 - Increased systemic blood flow
 - Hypotension
 - Cold shock
 - Increased vascular tone
 - Low systemic blood flow
 - Falling blood pressure
Pressor-Resistant Systemic Hypotension

- Normal to high systemic blood flow
 – ? Supranormal cardiac output
- More likely to be ≤ 27wks gestation or critically ill or perinatal asphyxia
- Down-regulation of cardiovascular adrenergic receptors, cytokine release, excess NO synthesis
- Exacerbated by immaturity, relative adrenal insufficiency
Returning to Our Case…
What do we do next?

• Echo demonstrating small ventricles (decreased preload)
 – Poor function
• Mean arterial blood pressure 31mmHg
• Lactic acidosis
Treatment of Neonatal Shock
Treatment Modalities

- Volume
- Cardiovascular pharmacologic therapies
- Corticosteroids

- Tailored to primary cause and effect
Volume

- Relatively uncommon in 1st day
- Replace the fluid that is lost
- Excessive volume \rightarrow worsen status if myocardial dysfunction
- Morbidities: PDA, lung dysfunction, ?IVH
Indications for Volume Resuscitation

- Known blood loss
- Insensible losses
- Declining central venous pressure
- Volume repletion in distributive shock
- Before starting pharmacologic support
 - 10mL/kg Normal Saline over ~30 minutes
 - May repeat
Crystalloid vs. Colloid?

 - Randomized hypotensive preterm and term to normal saline vs. 5% albumin
 - No difference in magnitude of BP response
 - No difference in need for 2nd bolus
 - NS is safe, readily available, cheaper
 - NS better than albumin
Crystalloid vs. Colloid?

- Randomized hypotensive preterm infants to NS vs. 5% albumin
- No difference in BP response
- No difference in need inotropic support
- NS just as effective
Volume Expansion

• Normal saline first choice
• Unless known anemia/blood loss
Pharmacologic Therapies

• Inotropes - drugs that improve myocardia contractility
 – Increase peak force of contraction under isometric conditions

• Chronotropes – drugs that increase HR

• Lusitropes – drugs that increases the rate of myocardial relaxation

• Limited evidence as to which to use, doses and monitoring
Inotropes

• Stimulate myocardial
 – α-adrenergic receptors
 – β-adrenergic receptors
 – Dopaminergic receptors
Mechanisms of Action

R, receptor; Gs and Gi, stimulatory and inhibitory G-proteins; AC, adenyl cyclase; PK-A, protein kinase A; SR, sarcoplasmic reticulum; α and β, alpha and beta-adrenoceptors; Epi, epinephrine; NE, norepinephrine; ACh, acetylcholine; M2, muscarinic receptor; A1, adenosine (Ado)

R, receptor; Gq, phospholipase C-coupled Gq-protein; PL-C, phospholipase C; PIP2, phosphatidylinositol biphosphate; IP3, inositol triphosphate; DAG, diacylglycerol; SR, sarcoplasmic reticulum; NE, norepinephrine; AII, angiotensin II; ET-1, endothelin-1; α1, alpha1-adrenoceptor; AT1, type 1 angiotensin receptor; ETA, type A endothelin receptor.

α- and β-Receptor Stimulation

[Diagram showing the pathways and mechanisms of α- and β-receptor stimulation, including changes in membrane proteins, intracellular signaling, and resulting effects on vasconstriction and vasodilation.]
Properties of Receptors

<table>
<thead>
<tr>
<th>Adrenergic, Dopaminergic, and Vasopressin Receptors</th>
<th>α_1/α_2^a</th>
<th>β_2</th>
<th>α_1</th>
<th>β_1/β_2</th>
<th>DA$_1$/DA$_2$</th>
<th>V$_{1a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasoconstriction</td>
<td>++++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>++++</td>
</tr>
<tr>
<td>Vasodilation</td>
<td>0</td>
<td>++++</td>
<td>0</td>
<td>0</td>
<td>++++</td>
<td>0</td>
</tr>
<tr>
<td>+Inotropy</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+++</td>
<td>+/+</td>
<td>0</td>
</tr>
<tr>
<td>+Chronotropy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cond. velocity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Cardiovascular actions mediated by adrenergic, dopaminergic, and vascular vasopressin receptors

Clin Perinatol 39 (2012) 221–238
Subsets categorize vasoactive agents by presence or absence of inotropic effects and effects on vasculature.
Trends in Neonatal Hypotension

• All Infants

• ELBW Infants

Arch Dis Child Fetal Neonatal Ed 2006;91:F213-F220.
Receptor Activity

<table>
<thead>
<tr>
<th>Drug</th>
<th>α_1</th>
<th>β_1</th>
<th>β_2</th>
<th>DA$_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>0 – 3+</td>
<td>1 – 4+</td>
<td>0 – 2+</td>
<td>0 – 4+</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>2 – 4+</td>
<td>3 – 4+</td>
<td>1 – 3+</td>
<td>0</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>4+</td>
<td>2+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>1+</td>
<td>3 – 4+</td>
<td>1 – 2+</td>
<td>0</td>
</tr>
<tr>
<td>Milrinone</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Hemodynamic Effects

<table>
<thead>
<tr>
<th>Drug</th>
<th>HR</th>
<th>MAP</th>
<th>CI</th>
<th>SVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>↑ - ↑↑</td>
<td>↑ - ↑↑</td>
<td>0 - ↑</td>
<td>↓/↑</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>↑ - ↑↑</td>
<td>↑ - ↑↑</td>
<td>↑↑</td>
<td>↓/↑↑</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>0 - ↑</td>
<td>↑↑↑</td>
<td>0 / ↓/↑</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>0 - ↑↑</td>
<td>↓/↑</td>
<td>↑</td>
<td>0 / ↓</td>
</tr>
<tr>
<td>Milrinone</td>
<td>↑↑</td>
<td>0 / ↓/↑</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Dopamine

- Most commonly used in NICU
- Stimulates α- and β-adrenergic, dopaminergic and serotinergic receptors
- Maturational differences in α- and β-adrenergic receptors → and thus dose-dependent responses
- Effective in shock due to myocardial dysfunction and shock due to altered vasoregulation
Dose-dependent Effects of Dopamine in Neonates

DOPAMINE

≥ 0.5 μg/kg/min

Dopamine Receptors
Renal, Mesenteric & coronary > pulmonary circulation, heart

+ Vasodilation in kidneys*, intestine#, coronary arteries
+ Increase in GFR*
+ Direct renal tubular effects*
+ Positive inotropy*
+ Endocrine effects

≥ 2-4 μg/kg/min

Alpha Receptors
More homogenously distributed

+ Vasoconstriction*
+ Positive inotropy*
+ Metabolic effects*

≥ 4-8 μg/kg/min

Beta Receptors
More homogenously distributed

+ Positive inotropy*
+ Positive chronotropy*
+ Peripheral vasodilation
+ Metabolic effects*

* Without adrenoreceptor down-regulation
Demonstrated effects in preterm neonates

Thoughts…

• Hemodynamic effects and response altered by downregulation of adrenergic receptors
 – Prolonged endogenous and exogenous receptor stimulation
 – May see attenuated response
Dobutamine

• Relatively cardioselective
• 2 enantiomers with different affinity for adrenergic receptors
• Negative isomer α_1-receptor agonist
 – Increases myocardial contractility and SVR
• Positive isomer β_1- and β_2-receptor agonist
 – Increases myocardial contractility, HR and conduction velocity, decreases SVR
• Net effect – increase myocardial contractility, HR (lesser extent), no effect or decrease SVR
Cardiovascular Effects of Dobutamine in Neonates

DOBUTAMINE

≥ 5µg/kg/min

Beta Receptors
- More homogenously distributed
- Positive inotropy*
- Decreased myocardial compliance (diastolic)
- Improved myocardial QO₂
- Positive chronotropy
- Peripheral vasodilation
- Metabolic effects

Alpha Receptors
- More homogenously distributed
- Positive inotropy*
- Decreased myocardial compliance (diastolic)
- Vasoconstriction

* Without adrenoreceptor down-regulation
Demonstrated effects in preterm neonates

Cardiovascular Effects

• Myocardial dysfunction, normal SVR → drug of choice
 – Increases CO (more effective than dopamine)
 – Example: Asphyxia

• Not appropriate 1st line if vasodilatory shock is primary cause (low SVR)
 – May add to dopamine
Dopamine vs. Dobutamine?

• If BP is low, dopamine better than dobutamine in increasing SVR
• Dobutamine without an α_1-adrenergic agonist may worsen hypotension
• If impaired myocardial function \rightarrow adding dobutamine may be beneficial
Dopamine vs. Dobutamine

• Randomized, double-blind, crossover trial

• Preterm infants < 32 weeks (N = 20)

• Dopamine
 – Median dose 12.5 mcg/kg/min
 – 100% achieved MAP > 30 mmHg
 – Increased SVR while maintaining SV

• Dobutamine
 – Median dose 20 mcg/kg/min
 – 40% achieved MAP > 30 mmHg
 – Dobutamine increased CO, less impact on MAP

Dopamine vs. Dobutamine

[Graphs showing comparison of MAP (mm Hg) with Dobutamine and Dopamine.]
Epinephrine

• Dose dependent stimulation of α- and β-adrenergic receptors

• Net effects
 – Significant increase in BP
 – Increases systemic blood flow by increasing SVR and CO

• 100-fold more potent than dopamine or dobutamine as inotrope
EPINEPHRINE

Beta Receptors
- More homogenously distributed
- Positive inotropy# (direct)
- Positive chronotropy#
- Peripheral vasodilation (renal, mesenteric. muscle)
- Metabolic effects#

Alpha Receptors
- More homogenously distributed
- Vasoconstriction#
- Positive inotropy#
- Metabolic effects#

0.01-0.1 μg/kg/min

> 0.1 μg/kg/min
Epinephrine Clinical Use

- Refractory shock, second line agent
 - Hyperglycemia
 - Renal vasoconstriction

- Free from myocardial damage and ischemia
 - Potent β- activity
 - Direct cardiac toxicity
 - Damage to arterial walls
 - Myocardial contraction band necrosis
 - Myocyte apoptosis
Norepinephrine

• Potent vasopressor
 – Increases HR
 – Increases myocardial contractility
 – Increases SVR

• 100-fold more potent than dopamine or dobutamine as inotrope

• Lacks β_2 effects

• Use if diastolic pressure low
 – If systolic pressure low, epinephrine
Milrinone

• Lusitope – aiding in diastolic relaxation
• Prevents degradation of cAMP → improves myocardial contractility, decreases PVR and SVR
 – Inotropy : vasoldilation = 1:20
• Limited studies in neonates
• Benefit when added to epi or norepi
• Caution with renal failure
Milrinone – Phosphodiesterase 3 Inhibitor

\[
\begin{align*}
\beta \text{ agonist} & \rightarrow \beta \text{ receptor} \\
& \downarrow \\
& \downarrow \text{Gs-GTP} \\
& \downarrow \text{adenyl cyclase} \\
& \downarrow \uparrow \text{cAMP} \\
\text{Phosphodiesterase Inhibitors} & \rightarrow \text{PDE3} \\
& \downarrow \text{AMP}
\end{align*}
\]
Corticosteroids

• Relative or absolute adrenal insufficiency
 – Especially sick preterm infants

• Glucocorticoids involved in regulating expression of cardiovascular adrenergic receptors

• If not enough receptors → decreased response to vasopressors
Adrenocortical Function

- 24-36 wk GA inverse relationship between GA and [cortisol]
 - Illness has significant negative effect on [cortisol]
 - ELBW requiring more respiratory support and inotropic support had lower cortisol levels
- Several studies shown that many stressed newborns fail to synthesize cortisol, have low levels
Adrenocortical Function in VLBW Infants

Ng et al. Arch Dis Child Fetal Neonatal Ed 2001;84:F122–F124
How Does Hydrocortisone Increase BP?

• Non-genomic effects:
 – Inhibits rate limiting enzyme in catecholamine break down
 – Decreases NE reuptake at nerve endings
 – Increases cytosolic Ca^{2+} availability
 – Inhibits vasodilatory effects of inflammatory response
 – Improves capillary integrity
 – 1-2 hrs

Seri and Evans
How Does Hydrocortisone Increase BP?, cont.

• Genomic Effects:
 – Upregulation of cardiovascular adrenergic receptors
 – Induction of second messenger systems
 • Synthesis and membrane assembly of new receptor proteins
 – Requires 8-12 hrs
Preterm Infants’ Response to Hydrocortisone

Seri and Evans, Pediatrics; May 2001
What About Late Preterm and Term Infants?

• Not well studied in term infants
 – Used frequently with paucity of evidence

• Currently being studied through NRN
 – RCT evaluating the effects of a course of hydrocortisone therapy on morbidity and cardiovascular function and long-term neurodevelopment and mortality of ill term and late preterm infants diagnosed with cardiovascular insufficiency

Clinical trials.gov: NCT 01954056
ECMO

• Refractory hypotension
• Failure of medical therapy
Back to Our Case

• Continued to fluid resuscitate
 – NS, blood products (coagulopathy)

• Started dopamine
 – Acute hypotensive episode with desaturation
 – More fluid, increased dopamine and added hydrocortisone

• Repeated echocardiogram
Repeat Echocardiogram
Case Conclusion

• Once intravascular volume improved, cardiac function improved → oxygenation improved, lactatic acidosis started to improve

• Able to wean off support over then next few days
Conclusions

• Early recognition of neonatal shock is imperative
 – Remember low BP ≠ low organ perfusion
• Volume resuscitation may not be indicated in preterm infant unless known cause for hypovolemia
 – Normal saline is preferred unless blood loss
Conclusions, cont.

• Pharmacologic therapies may be necessary
 – Dopamine is most common inotrope used by neonatologist, but depending on etiology of hypotension, others may be more appropriate

• Glucocorticoid therapy should be considered

• More data is needed to determine efficacy and long term outcomes
Thank You
Selected References

• Special thanks to J McClary, PharmD and M. Auslender, MD for