Baby Knows Breast:
Anatomy and Physiology of Infant Feeding

Tracy E. Herring, MA, CCC-SLP, CLC
Children’s Healthcare of Atlanta
Speech-Language Pathologist
Certified Lactation Counselor

Disclosure

➢ I have no financial relationships to disclose.
➢ I will not discuss “off label” and/or investigational use in my presentation.

Objectives

➢ To gain an understanding of infant oral feeding anatomy, physiology and development
➢ To learn about typical infant feeding patterns
➢ To describe the differences between breastfeeding and bottle feeding
➢ To promote breastfeeding success
➢ To gain an understanding of how common medical, developmental and oral-motor diagnoses contribute to oral feeding difficulties
➢ To learn how to help improve breastfeeding in infants with feeding difficulties
➢ To gain a basic understanding of swallowing and signs of swallowing problems
Oral Feeding
Anatomy and Physiology

Shared Systems of Respiration and Deglutition

- Nasal cavity
- Oral cavity
- Pharynx
- Larynx
- Trachea
- Esophagus

Infant Anatomy
Oral Structures

- **Lips**
 - Help to locate the nipple
 - Help to keep liquid in mouth during feeding by forming an anterior seal around nipple
 - Help to stabilize nipple position in mouth
 - Soft and closed at rest
 - Loosely shape to nipple with lips flanged in a V-shape with slight pressure at the corners during sucking

Oral Structures

- **Cheeks**
 - Provide stability through fat pads to maintain mouth shape
 - Serve as lateral boundaries to help maintain liquid bolus on tongue
 - Soft and well-defined at rest
 - Rounded and stable during sucking

Oral Structures

- **Tongue**
 - Fills oral cavity
 - Stabilizes nipple
 - Soft, well-defined, thin and flat with moderately rounded tip and slight central groove at rest
 - Seals oral cavity during sucking
 - Anteriorly at lower lip
 - Posteriorly at soft palate
 - Laterally at hard palate
 - Elevates anteriorly and lowers posteriorly during sucking
Oral Structures

- **Mandible/jaw**
 - Provides stable base for movement of other structures
 - Neutral, relaxed position at rest with approximation of the upper and lower jaws
 - Raises and lowers relative to sucking task
 - Excursions not too wide or too narrow
 - No breaking of seal

- **Hard palate**
 - Provides stability for tongue to assist with nipple compression, nipple position and generation of suction
 - Should be intact and approximate the shape of the tongue

- **Soft palate**
 - Assists tongue with maintaining lingual-palatal seal during bolus collection
 - Approximates the base of the tongue at rest and when sucking
 - Elevates during swallowing
 - Prevents liquid from entering the nasal cavity
 - Creates pressure generation for swallow

Sucking Patterns and Development

- **Compression**
 - Jaw and anterior tongue elevate to compress/squeeze the nipple
 - Creates positive pressure
 - Pushes the fluid out
 - Inefficient pattern in isolation

- **Suction**
 - Jaw drops and posterior tongue lowers while maintaining contact with structures at all tongue borders
 - Creates negative intra-oral pressure
 - Draws fluid from nipple into oral cavity
 - Efficient pattern, particularly with addition of compression
Sucking Patterns and Development

<table>
<thead>
<tr>
<th>Non-Nutritive Sucking (NNS)</th>
<th>Nutritive Sucking (NS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sucks per second</td>
<td>1 suck per second</td>
</tr>
<tr>
<td>Mild jaw excursions</td>
<td>Larger jaw excursions</td>
</tr>
<tr>
<td>Swallow every 6-8 sucks</td>
<td>Swallow every 1-3 sucks</td>
</tr>
<tr>
<td>Strong, rhythmic sucking</td>
<td>Strong, rhythmic sucking</td>
</tr>
</tbody>
</table>

Suck-Swallow-Breathe (SSB) Coordination

- Pharynx repeatedly changes from a deglutition channel into a respiratory channel
- Breath is held during the moment of the swallow → decreased respiratory rate and more shallow depth of respiration
- Sucking patterns are rhythmic and efficient
- Mature SSB cycle is 1:1:1
- Ratio can increase to 2-3:1:1 over time, as well as over the course of the feeding

Suck-Swallow-Breathe (SSB) Coordination

- 12-20 SSB cycles prior to pausing for a larger, calming breath
- Initial continuous sucking burst 30-80 seconds, then transition to intermittent sucking
- Stable autonomic, physiological, motor and state systems
Sucking Patterns and Development

Suck-Swallow-Breathe (SSB) Coordination

Sucking Patterns and Development

Sucking Development

<table>
<thead>
<tr>
<th>Immature Sucking Patterns</th>
<th>Mature Sucking Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression only (~34 weeks)</td>
<td>Integrated compression and suction (36-42 weeks)</td>
</tr>
<tr>
<td>Arrhythmic patterns with irregular periods of respiration and apnea</td>
<td>Rhythmic sucking patterns with smooth, even respirations</td>
</tr>
<tr>
<td>Short sucking bursts</td>
<td>Long sucking bursts</td>
</tr>
<tr>
<td>Longer and more frequent pauses</td>
<td>Shorter and fewer pauses</td>
</tr>
<tr>
<td>Weak sucking pressure → less volume extracted per suck → poor feeding efficiency</td>
<td>Strong sucking pressure → more volume extracted per suck → efficient feeding</td>
</tr>
</tbody>
</table>

Swallowing

Before swallow: collecting liquid in oral cavity during sucking
During swallow: no liquid entering airway
After swallow: no material left over in pharynx
Comparing Breastfeeding with Bottle Feeding

<table>
<thead>
<tr>
<th>Breastfeeding</th>
<th>Bottle Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Rooting required for latch</td>
<td>- Rooting desired, but not required for latch</td>
</tr>
<tr>
<td>- Infant must actively draw the nipple into her mouth and form an elongated teat</td>
<td>- Passive insertion of already formed nipple</td>
</tr>
<tr>
<td>- Nipple is soft, elastic, and variable</td>
<td>- Nipple is firm and static</td>
</tr>
<tr>
<td>- Infant must have a wide, open mouth upon initiation of feeding in order to pull in the nipple and areola and maintains a wide latch throughout the feeding</td>
<td>- Infant’s latch on a bottle nipple requires a more narrow lip seal and smaller jaw excursions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breastfeeding</th>
<th>Bottle Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Infant relies on both suction and compression to extract fluid</td>
<td>- Infant primarily relies on suction to extract fluid</td>
</tr>
<tr>
<td>- Sucking rate at the initiation of feeding at each breast is fast until let-down occurs, then the infant assumes a typical nutritive sucking rate</td>
<td>- Infant generally maintains a typical nutritive sucking rate throughout feeding</td>
</tr>
<tr>
<td>- Higher milk flow and rate of intake occur early in the feeding at each breast</td>
<td>- Milk flow and rate of intake will generally be consistent throughout the feeding</td>
</tr>
</tbody>
</table>

Children’s Healthcare of Atlanta
<table>
<thead>
<tr>
<th>Breastfeeding</th>
<th>Bottle Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Infant has a much greater ability to self-regulate flow rate and intake</td>
<td>➢ Infant has minimal control over the flow rate of the nipple and intake can suffer as a result</td>
</tr>
<tr>
<td>➢ Infant is more in control of the feeding and can calmly pause or stop when needed</td>
<td>➢ Feeder is more in control of the feeding than the infant, resulting in decreased ability for the infant to calmly pause or stop feeding when needed</td>
</tr>
<tr>
<td>➢ Infant intermittently spends time in non-nutritive sucking</td>
<td>➢ Very little to no non-nutritive sucking present during feeding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breastfeeding</th>
<th>Bottle Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Early stage progression of compression, suction and SSB pattern begins to emerge at 32-33 weeks gestational age</td>
<td>➢ Early stage progression of compression, suction and SSB pattern begins to emerge at 33-34 weeks gestational age</td>
</tr>
<tr>
<td>➢ Typically positioned in sidelying or in prone</td>
<td>➢ Often positioned in a reclined supine position</td>
</tr>
<tr>
<td>➢ Infants swallow breastmilk more safely</td>
<td>➢ Infants demonstrate more swallowing difficulties when swallowing formula</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breastfeeding</th>
<th>Bottle Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Setting the Stage for Successful Breastfeeding

- Breastfeed within 2 hours of birth
- Early and ongoing Kangaroo Care
- Optimal exposure to breast
- Exposure to the smell of mom’s milk
- Oral care with expressed breastmilk
- Non-nutritive sucking and positive oral experiences
- Promote tube to direct breastfeeding
- Avoidance of bottles? Nipple confusion?
- Cue-based feeding vs. volume-driven feeding
- Developmental care

Nipple Confusion

- New theory of flow rate confusion
 - More confused about differences in flow rate between the 2 different tasks than the feel or shape of the nipple
 - Initiation of flow
 - Flow rate control
Cue-Based Feeding vs. Volume-Driven Feeding

- **Volume-Driven Feeding**
 - The **QUANTITY** of feeding matters most
 - Faster is better
 - Make the baby eat, so she can go home
 - Caregiver focused

- **Infant-Driven Feeding**
 - The **QUALITY** of feeding matters most
 - Helps the baby **learn** to feed
 - Promotes safety of feeding by using a flow rate the infant can control in order to avoid aspiration and physiological instability
 - Infant focused
 - Keeps the feeder from “force feeding” the infant, or feeding past infant’s cues
 - Leads to earlier attainment of breastfeeding

Developmental Care

- Provides family-based support, care and training
- Understands that infants are active participants in their care, as they interact with their environment and collaborate with their caregivers
- Understands that atypical/abnormal interactions and “interventions” provided to a developing infant brain will result in maladaptive coping abilities and patterns within the infant
 - “Experience before term may alter not only brain function, but also brain structure.” Als, et al. (2004)
- Facilitate introduction and cessation of oral feedings per behavioral cues
- Teaches caregivers to respond in kind to signs of stress
Diagnoses Associated with Infant Feeding Difficulties

- Neurological disorders
- Pulmonary disease
- Cardiac disease
- Gastrointestinal disorders
- Genetic disorders
- Laryngeal defects
- Craniofacial defects

Craniofacial Defects
Prematurity

- Neurodevelopmental immaturity
- Lack of normal uterine and extrauterine environment/experience
- Negative and/or invasive procedures/positioning
- Difficult to self-regulate physiologic, motor and state systems at the same time to support feeding
- Difficult to integrate multiple modes of stimulation that occur simultaneously during feeding
 - Visual
 - Auditory
 - Gustatory (taste)
 - Vestibular (movement)
 - Olfactory (smell)
 - Proprioceptive (pressure on skin)
- Low energy reserves
- Vulnerable to inadequate growth

Oral-Motor and Feeding Disorders
Fatigue and Decreased Endurance

- Prolonged feeding times
- Unable to finish feedings
- Fatigue
- Physiologic shutdown

Atypical Tone

- Hypertonia (increased tone)
 - Difficulty coordinating motor movements
 - Poor anatomical alignment - shoulders pulled back, neck extended, back arched
 - Burn unnecessary calories
 - Muscle fatigue
 - Poor lip seal
 - Inappropriate shape and movement of the tongue

- Hypotonia (low tone)
 - Poor anatomical alignment – follows gravity
 - Decreased energy
 - Poor lip seal and weak sucking
 - Reduced control of liquid in mouth
 - Decreased timeliness and safety of swallowing

Oral-Motor Deficits

- Tongue
 - No central groove
 - Elevating, retracting, bunching
 - Flaccid, protruding
 - Thrusting
 - Restricted movement

- Jaw
 - Recessed
 - Depressed
 - Large excursions
 - Poorly graded movement
 - Clenching or biting
Oral-Motor Deficits

- Lip
 - Retracted
 - Pursed
 - Loose/floppy
 - Restricted movement

- Cheeks
 - High or low tone
 - Unstable
 - Decrease in available suction for tongue

- Hard palate
 - Narrow
 - Grooved
 - High-arched
 - Too flat

Poor SSB Coordination

- Uncoordinated, arrhythmic, inefficient

- Lack of self-imposed pauses

- Distress during feeding (i.e. increased heart rate, bradycardia, increased respiratory rate, desaturations, gulping, sputtering, gagging, etc.)

- Anterior bolus loss

Sensory Issues

- Hypersensitivity
 - Grimacing
 - Grimacing
 - Turning away
 - Refusal
 - Crying

- Hyposensitivity
 - Weak or no gag
 - Open mouth posture at rest
 - Poor ability to latch
 - Liquid left over in mouth
Swallow Dysfunction

- Signs/symptoms of aspiration include
 - Chest congestion
 - Wet/gurgly airway sounds or vocal quality
 - Coughing or choking
 - Apnea/breath holding
 - Significant color change
 - Multiple swallows
 - Watery eyes
 - Physiological instability
 - Frequent pulling away from nipple
 - Shutting down during feeding
 - Poor oral secretion management

- At least 94% of aspiration events in infants are silent (no cough)

Strategies for Improving Breastfeeding in Infants with Feeding Difficulties

- Facilitating an Environment Conducive to Feeding
 - Ensure space is dimly lit and quiet
 - Eliminate unnecessary environmental stimulation
 - Silence or turn down alarm volumes if in a hospital
 - Provide supportive containment to help infant organize for feeding
 - Swaddle securely, but not tightly, to promote flexion and organization
 - Position hands by face to promote self-calming/regulation
 - Move slowly and gently with gradual transitions
 - Speak quietly with a soft voice and provide gentle touch
Optimizing Position

- Infants age 0-3 months require total support of the head, neck, trunk and pelvis for proper alignment to support optimal breathing, sucking and swallowing
 - Hips flexed
 - Trunk elongated
 - Head and neck neural and aligned with spine
 - Chin tucked toward the chest (but not touching)
 - Shoulders and arms forward/gently rounded
 - Hands up around the face, chin or breast

- Chin too flexed → airway collapse
- Chin too extended → open airway/aspiration risk
- Mom and baby in comfortable, relaxed positions

Improving Tongue Patterns

Tongue tip elevation, tongue retraction and poor mouth opening
- Ensure stable feeding position
- Prior to feeding, provide firm pressure with a clean finger or pacifier along midline of tongue with slight stroking forward
- Stimulate/elicit the root reflex, stroking the infant’s lips gently with mom’s nipple
- Give drops of EBM to lips while infant is trying to latch
- If mouth does not open, may provide gentle downward pressure to jaw if tolerated
- Try prone and/or upright position

Poor central groove and weak suck
- Prior to feeding, provide firm pressure with a clean finger or pacifier along midline of tongue with slight stroking forward
- Generate NNS prior to feeding
Improving Tongue Patterns

Nipple Shield
- Makes nipple slightly more rigid and longer
- May be useful in infants with oral-motor feeding difficulties if other strategies have been unsuccessful
- Limited proprioceptive properties of the breast can interfere with proper tongue latch and movement
- May be useful if infant is able to establish a normal sucking pattern on finger, pacifier or bottle nipple
- Utilize as a strategy, not indefinitely
- **Drawbacks**
 - Infant can become dependent on shield
 - Can reduce the amount of milk received by infant, and in turn mom’s supply
 - Sucking rate and time resting may increase, more work

Improving SSB Coordination

- Externally pace infant by breaking the seal every ___# of sucks to externally impose breaks during sucking
 - Frequency of pacing based on anticipating when infant is going to have difficulty
 - Wait for calm breath prior to resuming active sucking
- Mom can pump through initial let down if flow is causing incoordination
- Try more upright or prone positioning

Improving Cheek and Jaw Patterns

Cheek support
- Squeeze one or both cheeks in toward nipple while infant is actively feeding

Jaw support
- Use finger on the chin/jaw bone to press upward toward the nipple

Tips
- Relax support when infant is taking a break
- Firmness of support should be in accordance with infant’s tolerance of this kind of tactile input and may vary throughout the feeding
- Constantly observe infant’s response and give breaks or lessen/stop support if needed, as this technique increases flow
Improving Cheek and Jaw Patterns

Supporting Energy and Endurance

- Provide postural stability
- Provide external pacing/impose
- Arousal techniques
 - Loosen swaddle
 - Change diaper
 - Gently alter sound or light level in environment
 - Gently rub cool cloth on forehead or chest
 - Change position
 - Gently stroke back or head
 - Infant’s arms up to head, guiding down face to mouth area to stimulate rooting
 - Deep tactile input as tolerated to trunk, shoulders, arms and face to increase proprioceptive awareness
- Feed more frequently

Normalizing Sensation

- Deep pressure at ears toward mouth, into mouth if needed – don’t drag fingers, progressive pressure, do symmetrically
 - Increases tolerance for hypersensitivity
 - Increases awareness for hyposensitivity
 - Prepares infant for feeding task
- Limit environmental stimulation for hypersensitivity
- Reduce variables/changes
Helping Infant when Mom is Experiencing Breastfeeding Difficulties

- Engorgement
- Breast/nipple shape
- Low supply
 - Often due to infant feeding problems
 - Irritability, lack of interest, fatigue, low energy/endurance
- Nipple pain
 - Labial and lingual frenums
 - Sucking pressure too strong

Helping Infant when Mom is Experiencing Breastfeeding Difficulties

Managing Swallowing Problems

- Diagnosed during MBSS (Modified Barium Swallow Study) or FEES (Fiberoptic Endoscopic Evaluation of Swallowing)
- Strategies (positioning, pacing, slowing flow)
- Try to allow to breastfeed if at all possible
- Thickening liquids

Diagnosed during MBSS (Modified Barium Swallow Study) or FEES (Fiberoptic Endoscopic Evaluation of Swallowing)

- Laryngeal Penetration
- Tracheal Aspiration
- Poor Oral Control
- Nasal Regurgitation
References

References