Prenatal Exposures and Low Birthweight

CLAIRE D. COLES, PHD
BETHANY KOTLER, MPH
MOTHERTOBABY.GA
CENTER FOR MATERNAL SUBSTANCE ABUSE AND CHILD DEVELOPMENT
JUNE 7, 2017
The Center for Maternal Substance Abuse and Child Development (MSACD)
http://www.emory.edu/MSACD

Percentage of infants weighing less than 2,500 grams (5 pounds, 8 ounces) at birth in the United States and Georgia.

- In Georgia, it is more than 9%.
- The percentage has not been decreasing.

From America’s Health Rankings.
What is “Low Birthweight (<2500 gm)

Two Factors

- Gestational age <37 weeks
 - Per the March of Dimes, 70% of “low birthweight” results from preterm birth.
- Growth retardation.
 - That is, small for gestational age, SGA, usually < 10th percentile.

- More common in women less than 17 years and greater than 35 years.
- One associated factor is prenatal use of cigarettes, alcohol, other illicit drugs, and misuse of prescription drugs.
Risk Factors for IUGR/SGA

- Maternal weight less than 100 pounds
- Poor nutrition in pregnancy
- Birth defects and chromosomal abnormalities
- Use of drugs, cigarettes and alcohol
- Pregnancy induced hypertension
- Placental abnormalities
- Umbilical cord abnormalities
- Multiple pregnancies
- Gestational diabetes
- Oligohydramnios

http://americanpregnancy.org/pregnancy-complications/intrauterine-growth-restriction/
Rates of Preterm Birth: Georgia, 2015, Showing slight decline in rates from 2010

<table>
<thead>
<tr>
<th>Location</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>11.5%</td>
</tr>
<tr>
<td>Georgia</td>
<td>10.8%</td>
</tr>
<tr>
<td>Atlanta</td>
<td>11.5%</td>
</tr>
<tr>
<td>Columbus</td>
<td>13%</td>
</tr>
<tr>
<td>Savannah</td>
<td>11%</td>
</tr>
<tr>
<td>Augusta</td>
<td>12.6%</td>
</tr>
<tr>
<td>Athens</td>
<td>10.6%</td>
</tr>
</tbody>
</table>

Race/Ethnicity

- White: 9.6%
- African-American: 13.7%
- Hispanic: 8.7%
- Asian: 8.6%

Rates in Europe: 5-10%

Drug Use During Pregnancy (% Women Reporting Use)

What is the Impact of substance use?

How is Fetal Alcohol Syndrome Diagnosed?

1. Prenatal Exposure
2. Face
3. Growth (IUGR)
4. Brain
Meta-analysis of 14 studies showing relative risk (RR) of preterm birth as a function of number of drinks per day in pregnancy.

From Patra et al, 2011
Preterm Birth Rates in Ukrainian Sample

- For whole sample (N=686)
 - Preterm rate (<37 weeks) overall = 7%
 - Alcohol Use Group rate = 9.9% vs No Use = 4.1%
 - RR of preterm birth in Alcohol group = 2.6 (p<.003)

- When the MVM group was removed, leaving 381 cases:
 - Alcohol Use group = 11.1% vs No Use = 4.9%
 - RR of preterm birth in Alcohol group = 2.6% (p<.02)

Thus MVM lowers total rate slightly but doesn’t change the relative proportion.
<table>
<thead>
<tr>
<th>Factor</th>
<th>β</th>
<th>X^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prenatal Care</td>
<td>-0.075</td>
<td>16.25</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Mom Age</td>
<td>-0.015</td>
<td>0.90</td>
<td>1</td>
<td>0.342</td>
</tr>
<tr>
<td>SES</td>
<td>0.018</td>
<td>6.75</td>
<td>1</td>
<td>0.009</td>
</tr>
<tr>
<td>TWEAK</td>
<td>-0.124</td>
<td>4.65</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>Cigarettes</td>
<td>-0.001</td>
<td>0.000</td>
<td>1</td>
<td>0.997</td>
</tr>
<tr>
<td>Child Sex</td>
<td>0.023</td>
<td>0.021</td>
<td>1</td>
<td>0.885</td>
</tr>
<tr>
<td>Site</td>
<td>0.222</td>
<td>1.758</td>
<td>1</td>
<td>0.185</td>
</tr>
</tbody>
</table>

Model Statistics: $X^2=50.89$, df=7, $p<0.000$

<table>
<thead>
<tr>
<th>Factor</th>
<th>β</th>
<th>X^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prenatal Care</td>
<td>-0.071</td>
<td>14.44</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Mom Age</td>
<td>-0.013</td>
<td>0.70</td>
<td>1</td>
<td>0.40</td>
</tr>
<tr>
<td>SES</td>
<td>0.018</td>
<td>6.72</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>AUDIT</td>
<td>-0.043</td>
<td>4.42</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>Cigarettes</td>
<td>0.000</td>
<td>0.000</td>
<td>1</td>
<td>0.993</td>
</tr>
<tr>
<td>Child Sex</td>
<td>0.020</td>
<td>0.02</td>
<td>1</td>
<td>0.901</td>
</tr>
<tr>
<td>Site</td>
<td>0.227</td>
<td>1.84</td>
<td>1</td>
<td>0.175</td>
</tr>
</tbody>
</table>

Model Statistics: $X^2=50.98$, df=7, $p<0.000$

Results: Less prenatal care, Lower SES and Alcohol Use lead to lower Gestational Age
Increase in Opiate prescriptions in US*

Neonatal abstinence Syndrome in Georgia

*National Institute on Drug Abuse
Effects of Opiates on the Fetus and New Born

- Opiates cross the placental barrier just as they cross the blood/brain barrier.

- **Growth reduction is common. (IUGR, SGA)**

- May be affected by intermittent opiate use (repeated episodes of intoxication and withdrawal).

- Stillbirth

- Methadone maintenance results in development of tolerance/dependence in infant.

- Neonatal withdrawal syndrome (abstinence syndrome) may occur as a result of exposure to any of the narcotics (and other depressive drugs).
Developmental Effects of Heroin and Opiates

- Growth Retardation
 - IUGR
 - SGA
- Prematurity
- SIDS

No persistent developmental effects attributable to teratogenic effects of drugs when confounding factors controlled.
Non-narcotic drugs causing neonatal behavior consistent with withdrawal*

- Alcohol
- Barbiturates
- Caffeine
- Chlordiazepoxide
- Clomipramine
- Diazepam
- Ethchlorvynol
- Glutethimide
- Hydroxyzine
- Meprobamate
- SSRIs

*American Academy of Pediatrics, 2012, Pediatrics, Published on-line, 1/30/12
Increase in Stimulant Prescriptions*

That is,

Amphetamines
Methylphenidate (Ritalin)

Non prescription stimulants include

Cocaine
Methamphetamine

*National Institute on Drug Abuse
Effects on the Fetus—Stimulant Drugs
(cocaine, methamphetamines)

- Growth retardation
- Risk of fetal wastage
 - Miscarriage, stillbirth
- Risk of Preterm birth
Effects on the Fetus

- After alcohol and tobacco, marijuana is the most commonly used drug in pregnancy.
 - No birth defects have been found
 - No growth retardation
 - Infants do not have significant effects in the newborn period.
There are many Teratogenic agents

Known Teratogens include:

- Diseases (CMV, Toxoplasmosis, rubella)
- Environmental Toxins (Lead, Mercury)
- Prescription Medications (Thalidomide, Warfarin, Accutane)
- Drugs of Abuse (Alcohol)

Here is a picture of a child with microcephaly associated with the Zika Virus.